

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Regionalisation of statistical model outputs creating gridded data sets for Germany

<u>Simona Höpp</u> Simona-Andrea.Hoepp@dwd.de

Für eine lebenswerte Zukunf

Bundesministerium für Bildung und Forschung

ReKliEs-De (Regionale Climate projections ensemble for Germany)

Objectives:

 Providing robust information about the range and the extremes of future climate change in Germany and its river catchment areas in a high spatial resolution (12.5 x 12.5 km²)

ReKliEs-De (Regionale Climate projections ensemble for Germany)

Objectives:

- Providing robust information about the range and the extremes of future climate change in Germany and its river catchment areas in a high spatial resolution (12.5 x 12.5 km²)
- Enlarging the CORDEX-EUR11 ensemble with more dynamical and statistical climate simulations
- Analysing possible systematical differences between the results of statistical and dynamical climate models

http://reklies.hlnug.de/

GCM + RCP	CCLM	REMO	WRF	WR'10	STARS
MPI-ESM-LR RCP 2.6					
MPI-ESM-LR RCP 8.5		COR	DEX		X
CNRM-CM5 RCP 8.5	- 0				limat
HadGEM2-ES RCP 8.5	EUR	Re	KliEs	De	olge
EC-EARTH RCP 8.5		sin	nulatio	ons	n-Or
CanESM2 RCP 8.5					nline
MIROC5 RCP 8.5					

ReKliEs-De (Regionale Climate projections ensemble for Germany)

Objectives:

- Providing robust information about the range and the extremes of future climate change in Germany and its river catchment areas in a high spatial resolution (12.5 x 12.5 km²)
- Enlarging the CORDEX-EUR11 ensemble with more dynamical and statistical climate simulations
- Analysing possible systematical differences between the results of statistical and dynamical climate models

http://reklies.hlnug.de/

GCM + RCP	CCLM	REMO	WRF	WR'10	STARS
MPI-ESM-LR					
RCP 2.6					
MPI-ESM-LR					
RCP 8.5		COR	DEX		X
CNRM-CM5					lin
RCP 8.5	O				naf
HadGEM2-ES	IR I				0
RCP 8.5	EU	Re	KliEs [,]	De	lge
EC-EARTH		sir	nulatio	ons	ņ
RCP 8.5					ģ
CanESM2) li
RCP 8.5					ne
MIROC5					
RCP 8.5					

HYRAS reference data set

HYRAS ("**HY**drologische **RAS**terdaten"; hydrological gridded data set):

- High-resolution gridded station data DWD/BFG-HYRAS
- 3 variables on daily basis between 1951 and 2006 (5 x 5 km²)
 - precipitation (max. 6200 stations)
 - mean temperature (max. 1000)
 - relative humidity (max. 800)
- In progress:
 - more variables
 - temporal extension

REGNIE method ("**REG**ionalisierung der **NIE**derschlagshöhen"; regionalisation of precipitation heights):

- 1. Calculation of climatological background fields on a monthly basis
- 2. Calculation of the daily values

REGNIE method ("**REG**ionalisierung der **NIE**derschlagshöhen"; regionalisation of precipitation heights):

52

18

- Calculation of climatological background fields on a monthly basis
- Cluster analysis
- Multiple linear regression
- Inverse distance weighting (IDW)
- 2. Calculation of the daily values
- Allocation of station values to nearest grid cell
- IDW of ratio of station values and background values on grid cell
- Daily values: ratio x background

Station data are conserved on final grid

Rauthe et al. (2013), Meteorlog. Z., DOI: 10.1127/0941-2948/2013/046

Regionalisation method for mean temperature and relative humidity

Optimal Interpolation method:

- Operational use of the Optimal Interpolation method in the SNOW-Modell Version 4 of DWD (forecast of snow cover)
- More about the method in Frick et al. (2014), Meteorolog. Zeitschr., Central European highresolution gridded daily data sets (HYRAS): Mean temperature and relative humidity, DOI: 10.1127/0941-2948/2014/0560

Application of the HYRAS methods to the statistical WETTREG model

WETTREG ("WETTerlagenbasierte REGionalisierung";

regionalisation based on circulation patterns):

- Output station based (1951 2100)
- > 7 model runs with 10 realisations
- Within Germany: climate stations (403) and precipitation stations (3248)
- Outside of Germany: EOBs data (gridded data set of about 28 x 28 km²)
- Adjustment of the ReKliEs-De mask
- Regionalisation of the WETTREG output with adjusted HYRAS methods

Application of the HYRAS methods to the statistical WETTREG model

WETTREG ("WETTerlagenbasierte REGionalisierung";

regionalisation based on circulation patterns):

- Output station based (1951 2100)
- > 7 model runs with 10 realisations
- Within Germany: climate stations (403) and precipitation stations (3248)
- Outside of Germany: EOBs data (gridded data set of about 28 x 28 km²)
- Adjustment of the ReKliEs-De mask
- Regionalisation of the WETTREG output with adjusted HYRAS methods

Comparability of dynamical und statistical models Enlarging the ReKliEs-De ensemble

First results: precipitation WETTREG (CNRM-CM5, RCP 8.5)

- Calculation of the field mean for Germany (daily values) over the whole simulation period
- High variability of daily precipitation
- Increasing frequency of 15 extreme precipitation events in this WETTREG simulation (as 10 of 2nd half of 21st century)
- Increase of precipitation amount per extreme precipitation event

First results: Mean temperature WETTREG (CNRM-CM5, RCP 8.5)

- Long-term temperature mean for present and future conditions (WETTREG)
- Future temperature increase

Plausibility of gridded model output

Correlation matrix for precipitation and temperature

Summary

Transfer of HYRAS regionalisation methods to the output of the statistical climate model WETTREG:

- Gridded model results are plausible \geq
- Comparability of statistical and dynamical model simulations
- Joint analysis of statistical and dynamical model outputs

Outlook:

- Analysis of the ReKliEs-De ensemble for future climate
- Analysis of robustness of the ensemble

ReKliEs-De user workshop June 14th/15th 2016 in Potsdam http://reklies.hlnug.de

Summary

Transfer of HYRAS regionalisation methods to the out of the statistical climate model WETTREG:
Gridded model results are planet for your
> Comparability of star
> Joint anal Than tention outputs
Outlook:
Analysis of the second ensemble for future climate
Analysis of robustness of the ensemble

ReKliEs-De user workshop June 14th/15th 2016 in Potsdam http://reklies.hlnug.de

Simona-Andrea.Hoepp@dwd.de

Plausibility of gridded model output

Calculation of correlation matrix C for all ReKliEs-De grid points:

- > Selection of a single grid point P(i, j)
- Selection of a specific period (e. g. 1971-2000)
- > Calculation of the correlation of grid point P(i, j) to any other grid point

$$C(i,j) = corr(P(i,j), P(i,j))$$

$$C(i+1,j) = corr(P(i,j), P(i+1,j))$$

$$C(i,j-1) = corr(P(i,j), P(i,j-1))$$

$$+1, j - 1) = corr(P(i,j), P(i+1,j-1))$$

REGNIE method ("**REG**ionalisierung der **NIE**derschlagshöhen"; regionalisation of precipitation heights):

- 1. Calculating the climatological background fields on monthly basis
- Cluster analysis: Dividing the whole area into homogeneous, climatological areas (30 clusters)
- Multiple lineare regression of monthly mean of each station for long time period (z. B. 1961-1990)
- Inverse distance weighting (IDW) of residuals and regression coefficients to final grid
- Calculation the background values of each grid cell by substituting the resiuals and regression values into the regression equation

REGNIE method ("**REG**ionalisierung der **NIE**derschlagshöhen"; regionalisation of precipitation heights):

- 1. Calculation of the climatological background fields on monthly basis
- 2. Calculation of the daily data set
- Allocation of the station values to the nearest grid cell
- Calculation of the ratio of station values and background values
- IDW of the ratios to the grid cells without station values
- Calculation of the daily data set by multiplication of the ratios with the background values
- Station data are conserved on final grid

Rauthe et al. (2013), Meteorlog. Z., DOI: 10.1127/0941-2948/2013/046

Regionalisation method for temperature and relative humidity

Optimal Interpolation (interpolation for each time step separately):

- Find 15-30 stations influencing the grid point
- Splitting the station values z into background value z_b and anomaly value z_a : $z = z_b(x, y, h) + z_a$
 - 1. Calculation of the **background values** for stations and grid points by means of a Trend Surface Analysis employing a multiple linear regression using all station values and successive calculation of station anomalies
 - 2. Statistical interpolation of all station anomalies to the grid by the **spatial correlation function**
 - 3. Calculation of **interpolation weights** by solving the linear equation system consisting of the station correlation matrix and the correlation vector between stations and grid points
 - Calculation of anomalies by multiplication of normalized interpolation weights and background values
 - Grid point values: background values + anomalies

