

Climate Change Alternatives for Central Europe

Klaus Keuler

bild Brandenburg University of Technology Cottbus - Senftenberg

Co-authors Heike Hübener

Katharina Buelow Christoph Menz Christian Steger Kirsten Warrach-Sagi Hessian Agency for Nature Conservation, Environment and Geology (HLNUG), Wiesbaden Climate Service Center Germany (GERICS), Geesthacht Potsdam Institute for Climate Impact Research (PIK), German Meteorological Service (DWD), Offenbach University of Hohenheim (UHOH), Stuttgart

b-tu The ReKLiEs-De project

Regional Climate Projections Ensemble for Germany

• a joint research project funded by German Ministry of Education and Research

Major objective

 provide robust climate change information on high spatial resolution for Germany and adjacent large river catchments draining into Germany (the ReKliEs-domain)

Extended the Euro-CORDEX ensemble by 27 simulations with

- 3 dynamical downscaling RCMs: CCLM, REMO, WRF
- 2 statistical downscaling RCMs: WETTREG, STARS

For two scenarios RCP8.5 and RCP2.6

Resulting in a total ensemble of

- 52 regional climate simulations (incl. the existing Euro-CORDEX simulations)
- with global forcings from 7 different GCMs
- downscaled by 6 different dynamical and 2 statistical RCMs
- analyzed on the full ReKliEs-domain and 9 subdomains (incl. 8 river catchments)

b-tu The simulation ensemble

- **37** simulations of the **business as usual** scenario (RCP8.5)
- 15 simulations of the climate protection scenario (RCP2.6)

GCMs RCMs	MPI-ESM-LR r1, r2	CNRM-CM5	HadGEM2-ES	EC-EARTH r1, r3, r12	MIROC5	CanESM2	IPSL-CM5A-MR
CCLM	XX	X	X	XX	X	X	
REMO	X X XX	X	X	X	X	X	
WRF	XX		X	X			X
WETTREG	XX	X	X	X	X	X	
STARS 3	XX	X	XX	ХX	X	X	
RCA4	XX	X	ХX	ХX			X
RACMO			XX	ХX			
HIRHAM5				XX			

Bundesministeriun für Bildung und Forschung

b-tu Analysis of climate change scenarios

Climate change indices (CCI)

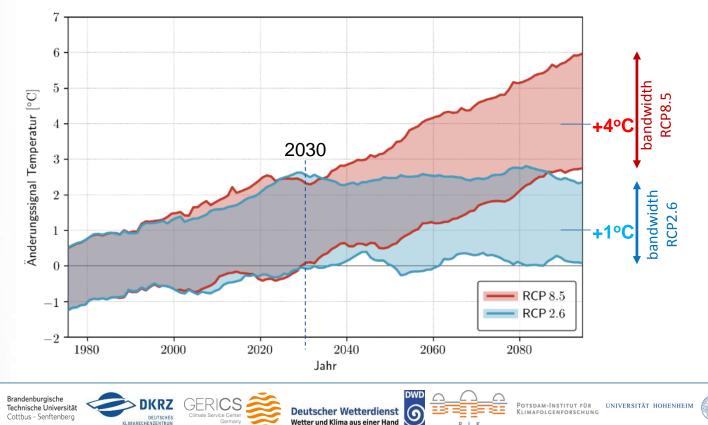
- 24 climate change indices have been calculated for each simulation
- characterizing climatological means and extremes
- mainly for temperature and precipitation
- on monthly, seasonal and annual time scales

Climate change detection

- calculation of 30-year means for CCIs
- for 3 periods **1971-2000**, **2021-2050**, **2071-2100**
- climate change signal = difference between future and past period

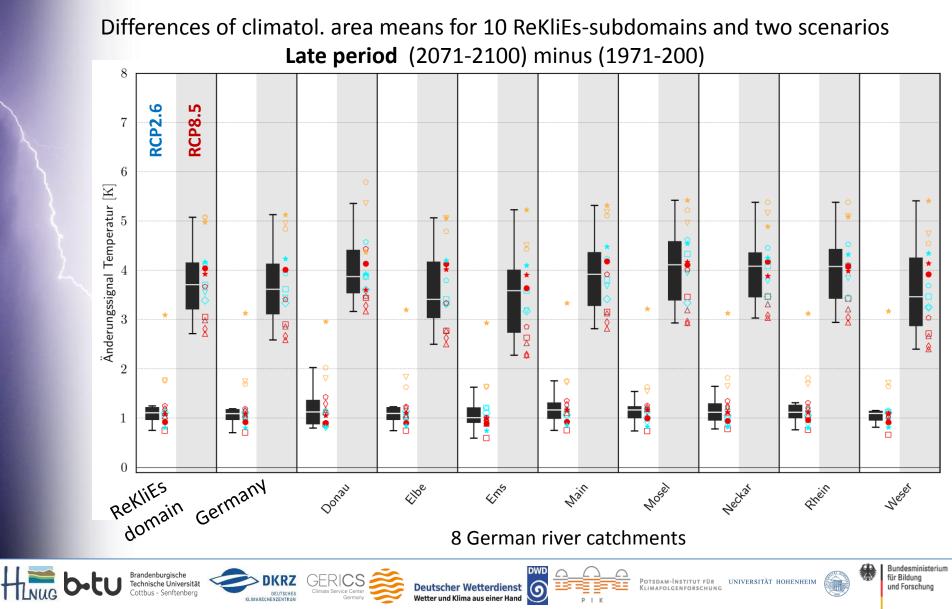
Focus of this talk: Comparison of the two alternative emissions scenarios

- climate change signals for RCP2.6 and RCP8.5
- using only those 15 GCM-RCM (X) combinations which have been used to simulate both scenarios

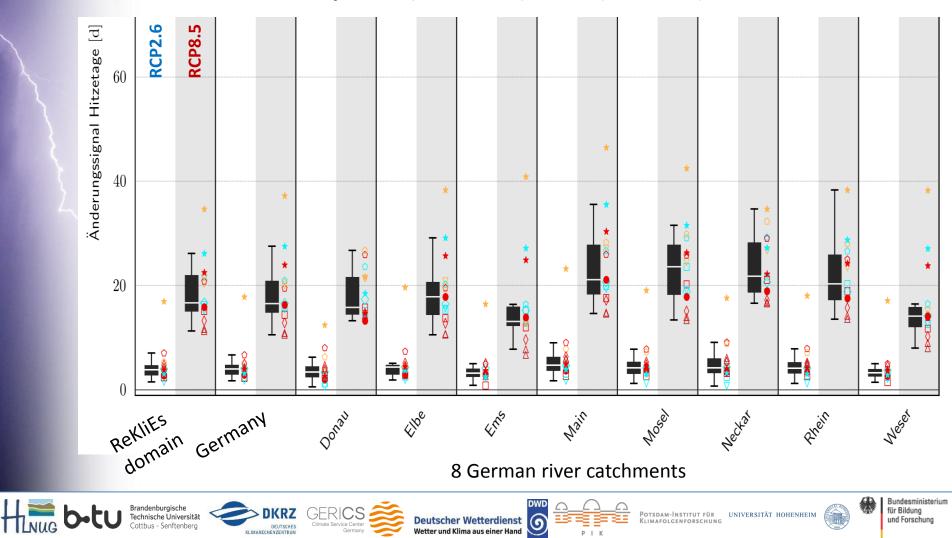

b-tu Annual mean temperature rise

Stronger rise of greenhouse gases = stronger rise of temperature

Change of annual mean temperature (area men ReKliEs-domain) against median of reference period (1971-2000) for all simulations of the


- business as susual (RCP8.5)
- climate protection scenario (RCP2.6)

b-tu Increase of summer temperatures



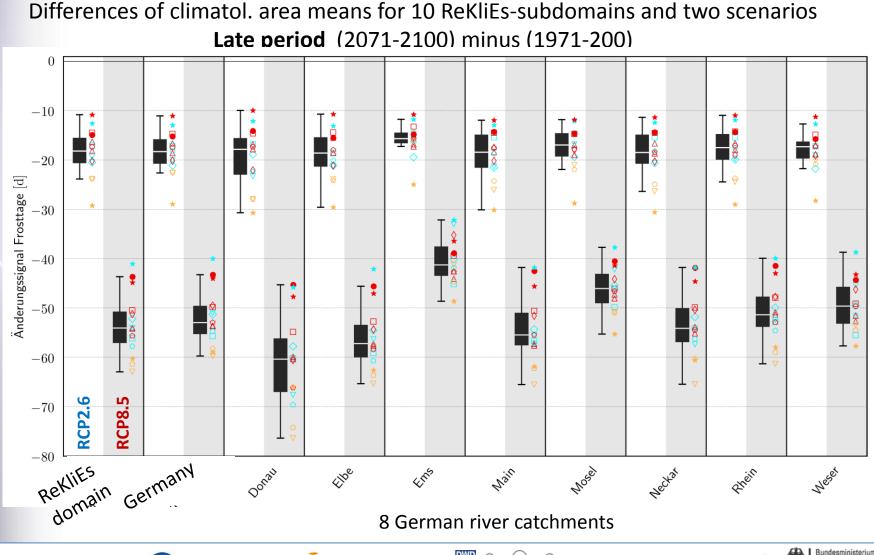
b-tu Increase of hot days ($T_{max} \ge 30 \text{ °C}$)

Differences of climatol. area means for 10 ReKliEs-subdomains and two scenarios Late period (2071-2100) minus (1971-200)

b-tu Decrease of frost days (T_{min} < 0 °C)

Brandenburgische

TLNUG


Technische Universität

Cottbus - Senftenberg

DEUTSCHES

KLIMARECHENZENTRUM

9

PIK

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

UNIVERSITÄT HOHENHEIM

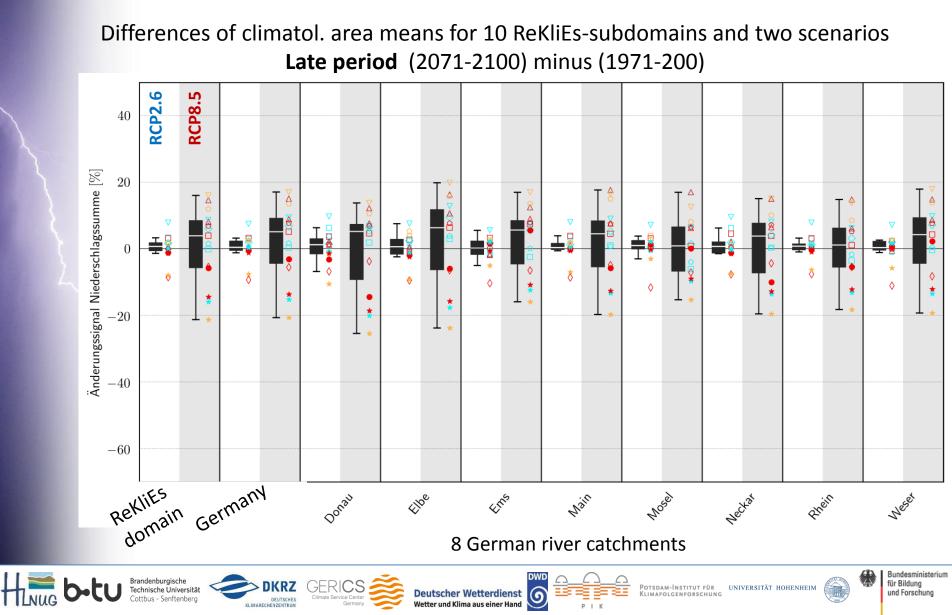
Potsdam-Institut für

KLIMAFOLGENFORSCHUNG

b-tu Summary of temperature effects centennial climate change

Difference of ensemble median, annual values, area mean over Germany

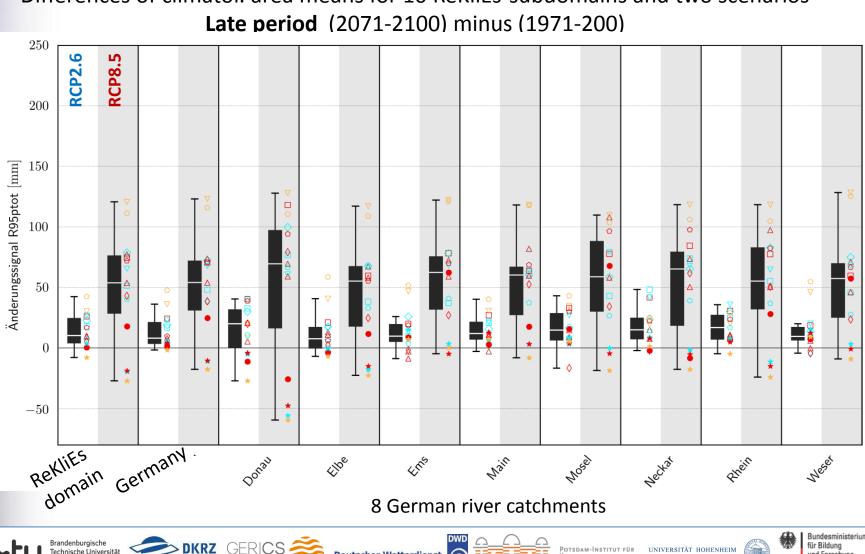
Climate Change Index	RCP 2.6	RCP 8.5	Ratio of changes	
Mean temperature	+1 °C	+3,5 °C	3 ½ x lesser	
Ice days (Tmax < 0°C)	-7.3 d	-16 d	> 2 x lesser	
Frost days (Tmin < 0°C)	-18 d	-53 d	3 x lesser	
Summer days (Tmax > 25°C)	11 d	+42 d	~ 4 x lesser	
Hot days (Tmax > 30°C)	+4 d	+16 d	4 x lesser	
Tropical nights (Tmin > 20°C)	0.5 d	+4.8 d	neglectable	
Diurnal temperature range	+0.05 °C	-0.05 °C	no difference	
Ratio of cold days per year (tx10p)	-5.1 %-points	-9.3 %-points	~ 2 x lesser	
Ratio of warm days per year (tx90p)	+5 %-points	+23 %-points	4 ½ x lesser	
Cold spell duration index (csdi)	-3 d	-6 d	2 x lesser	
Warm spell duration index (wsdi)	+10.5 d	+53.5 d	5 x lesser	


Potsdam-İnstitut für UNIVERSITÄT HOHENHEIM (Limafolgenforschung

Bundesministeriu für Bildung und Forschung

b-tu Annual precipitation

Intensive precipitation


b-tu

Cottbus - Senftenberg

DEUTSCHES

KLIMARECHENZENTRUM

accumulated precipitation of intensive rain days (r95ptot)

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

6

(LIMAFOLGENFORSCHUNG

Differences of climatol. area means for 10 ReKliEs-subdomains and two scenarios

ReKliEs-De

Regionale Klimaprojektionen Ensemble für Deutschland

und Forschung

b-tu Summary of precipitation effects centennial climate change

Difference of ensemble median, annual/seasonal values, area mean over Germany

Climate Change Index	RCP 2.6	RCP 8.5	Ratio of changes
Annual precipitation	+0 %	+5 %	-5 %-points
Winter precipitation	+3.5 %	+15 %	4 x lesser
Summer precipitation	-4.5 %	-15 %	3 x lesser
Number of dry days (pr < 1mm)	+1.3 d	+2.4 d	2 x lesser
Number of rain days (pr \ge 1 mm)	-1.3 d	-2.4 d	2 x lesser
Number of intensive rain days (pr \ge 10 mm)	+0.4 d	+2.8 d	7 x lesser
Number of heavy rain days (pr \ge 20 mm)	+0.2 d	+1.1 d	5 ½ x lesser
Strong precipitation amount (r95ptot)	+8.3 mm	+ 53 mm	6 ½ x lesser
Extreme precipitation amount (r99ptot)	+5.4 mm	+29.3 mm	5 ½ x lesser

Bundesministerium für Bildung und Forschung

b-tu Summary and conclusions

All temperature and precipitation changes evolve substantially weaker with a more moderate CO₂-increase!

Further climate change is unavoidable! But it still can be limited to an acceptable level!

However, the climate protection scenario (RCP2.6) requires an extensive reduction of CO₂ emissions

- consequently from all sectors
- globally
- Immediately

beginning with year 2020

No time left to opt for the right emission path!

Bundesministeriu für Bildung und Forschung

b-tu

Acknowledgements

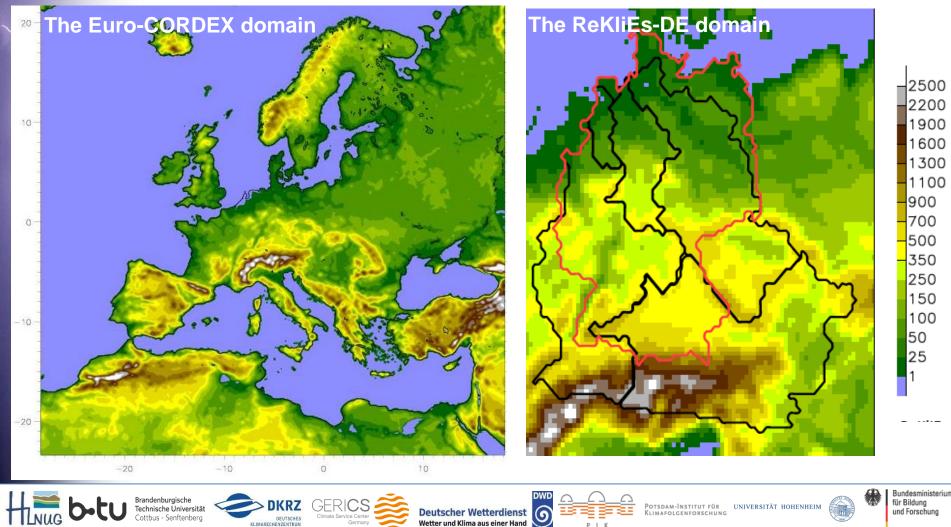
Contributing project partners of ReKliEs-De

- Heike Hübener, Cornelia Fooken (HLNUG) → Poster X5.470
- Katharina Bülow (GERICS)
- Barbara Früh, Christian Steger, Simona Höpp (DWD)
- Peter Hoffmann, Christoph Menz, Arne Spekat (PIK)
- Hans Ramthun, Frank Toussaint (DKRZ)
- Kirsten Warrach-Sagi, Victoria Mohr (UHOH) → Poster X5.497
- Kai Radtke, Michael Woldt, Klaus Keuler (BTU)

Thank you for your attention

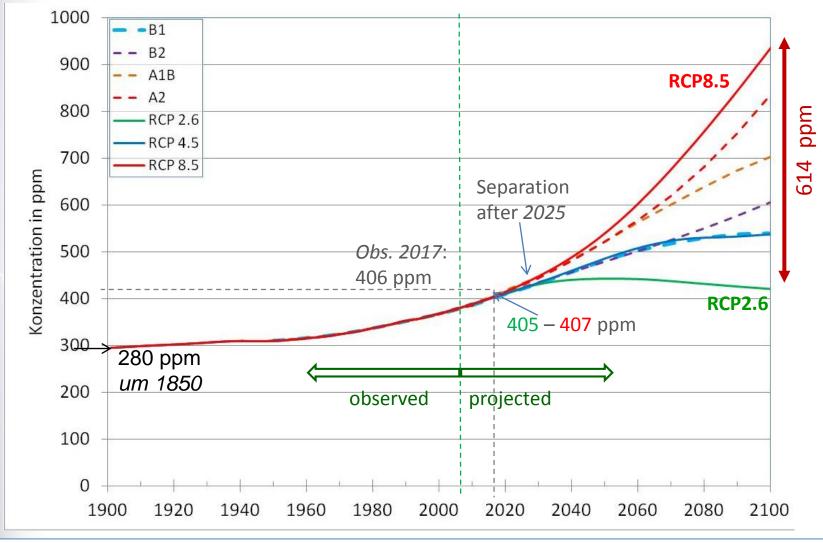
⊙ CA2	⊙ CN5	⊙ ECE	⊙ HG2	⊙ IP5	⊙ MI5	⊙ MPI
		□ CLM				□ CLM
		\diamondsuit HIR				
		\triangledown RAC	\triangledown RAC			
		□ RCA	◻ RCA			O RCA
						\triangle REM
		★ ST3	★ ST3			★ ST3
						• W13

[1
	MPI_CLM_R85 ECE_CLM_R85
	HG2_CLM_R85
	CN5_CLM_R85
	CA2_CLM_R85
	MI5_CLM_R85
	MP1_REM_R85
	MP2_REM_R85
	ECE_REM_R85
	HG2_REM_R85 CN5_REM_R85
	CA2 REM_R85
	MI5 REM R85
	MPI RCA R85
	ECE RCA R85
	HG2 RCA R85
	CN5 RCA R85
	IP5 RCA R85
	ECE RAC R85
	HG2 RAC R85
	ECE_HIR_R85
	IP5_WRF_R85
	MPI_WRF_R85
	ECE_WRF_R85
	HG2_WRF_R85
	MPI_W13_R85
	CN5_W13_R85
	HG2_W13_R85
	ECE_W13_R85
	MI5_W13_R85
	CA2_W13_R85
	MPI_ST3_R85
	CN5_ST3_R85
	CA2_ST3_R85
	ECE_ST3_R85
	MI5_ST3_R85
	HG2_ST3_R85
L	


 \Diamond WRF

b-tu ReKliEs-De data bas and domains

A combination of 25 Euro-CORDEX and 27 ReKliEs-DE simulations


- DDS-RCMs on full Euro-CORDEX domain
- ESD-RCMs on ReKliEs-De domain only

b-tu Greenhouse gas scenarios

Development of CO₂ concentration from 1900 to 2100

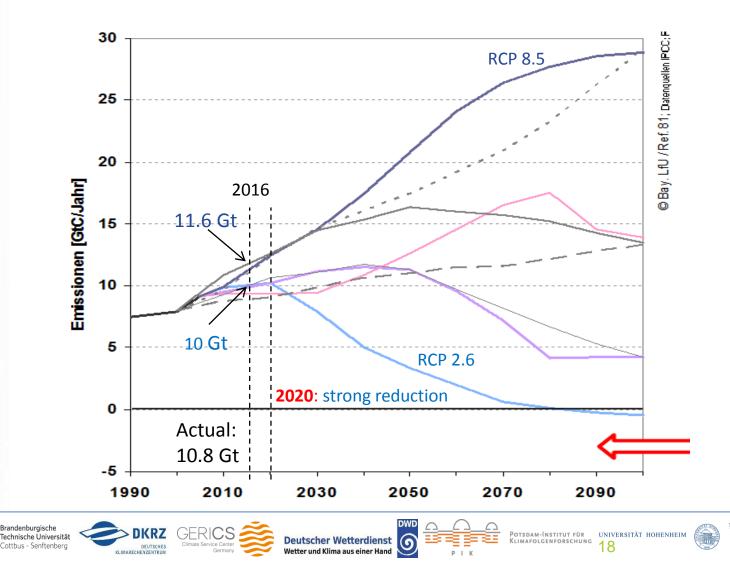
Brandenburgische

Technische Universität

DEUTSCHES

KLIMARECHENZENTRUM

Cottbus - Senftenberg


Potsdam-Institut für UNIVERSITÄT HOHENHEIM Klimafolgenforschung

Emission scenarios

© Bay. LfU / Ref. 81, Datenquellen IPCC, RCP database

Bundesministerium für Bildung und Forschung